多模量子存储研究室
Prof. Bao-Sen Shi's Research Group

论文专著

---------

2024

---------


[13] Zhao-Qi-Zhi Han,et.al,In-Lab High Resolution Mid-infrared Up-conversion Stellar Interferometer Based on Synthetic Long Base-Line, accepted by Phys. Rev. D..

[12]Ren-Hui Chen, et.al, Visible-band polarization-entangled photon source by quantum frequency, Phys. Rev. Appl.. 22,014020(2024).

[11] Ren-Hui Chen, et.al, Detection efficiency measurement of an up-conversion single-photon detector at 3.39µm based on SPDC ,Opt. Express‍.10.1364/OE.528802

[10] En-ze Li, et.al, Non-Hermitian unidirectional routing of photonic qubits, Phys. Rev. Appl.. 21,L061002(2024)

[9] Li Chen, Dong Zhao, Kun Huang, Zhi-Yuan Zhou, and Bao-Sen Shi, Characterizing Mid-Infrared micro-ring resonator with frequency conversion, Opt. Express‍ 32, 21795-21805 (2024).

[8] Zhang Lihua, Liu Zong-Kai, Liu Bang, Wang Qi-Feng, Ma Yu, Han Tian-Yu, Zhang Zheng-Yuan, Cheng Han-Chao, Shao Shi-Yao, Li Qing, Zhang Jun, sheng Ding, Shi Baosen, Tunable off-resonant Rydberg microwave frequency comb spectroscopy based on metawaveguide coupled Rydberg atoms,Chin. Opt. Lett., 2024, 22(8).

[7] Li-Hua Zhang, Bang Liu, Zongkai Liu, Zhengli Zhang, Shi-Yao Shao, Qi-Feng Wang, Yu Ma, Tian-Yu Han, Guangtao Guo, D. Ding, Bao-Sen Shi, Ultra-Wide Dual-band Rydberg Atomic Receiver Based on Space Division Multiplexing RF-Chip Modules,Chip. 2024.100089‍.

[6] 韩赵其智,葛正,王小骅,周志远,史保森, 基于啁啾极化晶体的中红外上转换成像研究红外与激光工程 2024, 53(3): 20230585.

[5] Li Chen, Zheng Ge, Su-Jian Niu, Yin-Hai Li,Zhao-Qi-Zhi Han, Yue-Wei Song, Wu-Zhen Li,Ren-Hui Chen, Ming-Yuan Gao, Meng-Yu Xie,Zhi-Yuan Zhou,and Bao-Sen Shi, Effective multiband synthetic four-wavemixing by cascading quadratic processes, Applied Physics Letters 124,121110(2024)

[4] Ming-Yuan Gao, Yin-Hai Li, Yan Li, Zhenghe Zhou, Guang-Can Guo, Zhi-Yuan Zhou, and Bao-Sen Shi,Narrowband telecom-band polarization-entangled photon source by superposed monolithic cavities, Phys. Rev. A. 109, 033720(2024)

[3] Ming-Yuan Gao, Yin-Hai Li, Zhao-Qi-Zhi Han, Qiang Zhou, Guang-Can Guo, Zhi-Yuan Zhou, and Bao-Sen Shi, Polarization entanglement by two simultaneous backward phase-matching processes in a single crystal, Phys. Rev. Applied 21,034029(2024)

[2] Dongsheng Ding, Zhengyang Bai, Zongkai Liu, Baosen Shi,Guangcan Guo, Weibin Li, and C. Stuart Adams, Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system,Sci. Adv.10,eadl5893(2024).

[1] Zheng Ge,Zhao-Qi-Zhi Han, Fan Yang, Xiao-Hua Wang, Yin-Hai Li, Yan Li, Ming-Yuan Gao, Ren-Hui Chen, Su-Jian Niu, Meng-Yu Xie, Zhi-Yuan Zhou, and Bao-Sen Shi, Quantum entanglement and interference at 3 μm, Sci. Adv.10,eadm7565(2024).


图文展示

---------

2023

---------


[15] Ming-Xin Dong, Wei-Hang Zhang, Lei Zeng, Ying-Hao Ye, Da-Chuang Li, Guang-Can Guo, Dong-Sheng Ding, and Bao-Sen Shi, Highly efficient storage of 25-dimensional photonic qudit in a cold-atom-based quantum memory, Phys. Rev. Lett. 131, 240801 (2023)

[14] Zheng Ge, Zhaoqizhi Han, Yiyang Liu, Xiaohua Wang, Zhiyuan Zhou, Fan Yang, Yinhai Li, Yan Li, Li Chen, Wuzhen Li, Sujian Niu, and Baosen Shi, Mid-infrared upconversion imaging under different illumination conditions, Phys. Rev. Applied 20, 054060 (2023)

[13] Zhao-Qi-Zhi Han, Zhi-Yuan Zhou, and Bao-Sen Shi, Quantum Frequency Transducer and Its Applications, Adv Devices Instrum. 2023;4:0030 (2023)

[13] Weihang Zhang, Yinghao Ye, Lei Zeng, Enze Li, Jingyuan Peng, Dongsheng Ding, and Baosen Shi, High-dimensional frequency conversion in a hot atomic system, Chinese Optics Letters 21(9), 092701 (2023)

‍‍‍‍‍‍[11] Bang Liu, Lihua Zhang, Zongkai Liu, Zian Deng, Dongsheng Ding, Baosen Shi, and Guangcan Guo, Electric Field Measurement and Application Based on Rydberg Atoms, Electromagnetic Science, vol. 1, no. 2, pp. 1-16 (2023)

[10] Ming-Yuan Gao, Yin-Hai Li, Zheng Ge, Su-Jian Niu, Guang-Can Guo, Zhi-Yuan Zhou, Bao-Sen Shi, Observing multiple processes of backward phase matching spontaneous parametric down-conversion in a single-periodic crystal, Opt. Lett. 48, 3953-3956 (2023)

[9] Meng-xin Ren, Zhi-Han Zhu, Bao-Sen Shi, et al, Roadmap on nonlinear optics-focus on Chinese research, Phys. Photonics 5 032501 (2023)

[8] Zhi-Yuan Zhou, Zhi-Han Zhu, and Bao-Sen Shi, Diffractive Theory Study of Twisted Light’s Evolution during Phase-Only OAM Manipulations, QuantumEngineering 4589181 (2023)

[7] 周志远, 史保森, 基于频谱迁移的红外探测研究进展(特邀), 红外与激光工程 52(5): 20230165 (2023)

[6] Zheng Ge, Zhi-Yuan Zhou, Jing-Xin Ceng, Li Chen, Yin-Hai Li, Yan Li, Su-Jian Niu, Bao-Sen Shi, Thermal camera based on frequency upconversion and its noise-equivalent temperature difference characterization, Adv. Photon. Nexus 2(4) 046002 (2023)

[5] Hai-Jun Wu, Bing-Shi Yu, Jia-Qi Jiang, Chun-Yu Li, Carmelo Rosales-Guzmán, Shi-Long Liu, Zhi-Han Zhu, and Bao-Sen Shi, Observation of Anomalous Orbital Angular Momentum Transfer in Parametric Nonlinearity, Phys. Rev. Lett. 130, 153803 (2023)

[4] Xin-Yu Zhang, Hai-Jun Wu, Bing-Shi Yu, Carmelo Rosales-Guzmán, Zhi-Han Zhu, Xiao-Peng Hu, Bao-Sen Shi, Shi-Ning Zhu, Real-Time Superresolution Interferometric Measurement Enabled by Structured Nonlinear Optics, Laser Photonics Rev. 2200967 (2023)

[3] Jia-Qi Jiang, Hai-Jun Wu, Bing-Shi Yu, Chun-Yu Li, Xin-Yu Zhang, Xiao-Peng Hu, Bao-Sen Shi, and Zhi-Han Zhu, Nonlinear orbital angular momentum conversion with spatial-amplitude independence, J. Opt. 25 024004 (2023)

[2] Wei-Hang Zhang, Ying-Hao Ye, Lei Zeng, Ming-Xin Dong, En-Ze Li, Jing-Yuan Peng, Yan Li, Dong-Sheng Ding, and Bao-Sen Shi, Telecom-wavelength conversion in a high optical depth cold atomic system, Opt. Express 31, 8042-8048 (2023)

[1] Lei Zeng, Ying-Hao Ye, Ming−Xin Dong, Wei-Hang Zhang, En-Ze Li, Da-Chuang Li, Dong-Sheng Ding, and Bao-Sen Shi, Optical memory for arbitrary perfect Poincaré states in an atomic ensemble, Opt. Lett. 48, 477-480 (2023)




---------

2022

---------


[1] Chen Yang, et. al., Measuring the tuning curve of spontaneous parameter down-conversion using a comet-tail-like pattern.Opt. Lett. 47, 898-901 (2022).

[2] Hai-Jun Wu, et. al., Conformal frequency conversion for arbitrary vectorial structured light. ‍‍Optica 9, 187-196 (2022).

[3] Zong-Kai Liu, et. al., Deep learning enhanced Rydberg multifrequency microwave recognition. Nat Commun 13, 1997 (2022).

[4] 周志远,史保森,轨道角动量光束非线性转换研究进展[J]. 量子电子学报, 2022, 39(1): 32-49.

[5] Zheng Ge, et. al., Up-conversion detection of mid-infrared light carrying orbital angular momentum. Chinese Phys. B 31 104210 (2022).

[6] Su-Jian Niu, et. al., Advantages of frequency conversion technique in quantum interference. Phys. Rev. A. 105, 063715 (2022).

[7] Bang-Liu, et. al., Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor. Phys. Rev. Appl. 18, 014045 (2022).

[8] Li-Hua Zhang, et. al., Rydberg microwave frequency comb spectrometer. Phys. Rev. Appl. 18, 014033 (2022).

[9] Dong-Sheng, Zong-Kai Liu, et. al., Enhanced metrology at the critical point of a many-body Rydberg atomic system.Nat. Phys.‍ ‍18, 1447–1452 (2022).(丁冬生,刘宗凯,共同一作)

[10] Wei-Hang Zhang, et. al., Detection of infrared light through stimulated four-wave mixing process. Front. Quantum. Sci. Technol. 1:984638.

[11] Wu-Zhen Li, Chen Yang, et. al., Harmonics-assisted optical phase amplifier. Light Sci Appl 11, 312 (2022).(李武振,杨琛,共同一作)

[12] Su-Jian Niu, et. al., Multi-color laser generation in periodically poled KTP crystal with single period. ‍Chin. Opt. Lett. 21, 021901.

[13] Ying-Hao Ye, Lei Zeng, et. al., Long-lived memory for orbital angular momentum quantum states. Phys. Rev. Lett. 129, 193601.(叶英豪,曾雷,共同一作)




---------

2021

---------


[1] Zheng Ge, et. al., Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals. Opt. Lett. 46, 158-161 (2021)

[2] Yin-Hai Li, et. al., Compact sub-GHz bandwidth single-mode time-energy entangled photon source for high-speed quantum networks. OSA Continuum 4, 608-620 (2021)(Editors' Pick)

[3] Zheng-Yuan Zhang, et. al., Review of quantum simulation based on Rydberg many-body system. Chin. Phys. B 30(2): 020307 (2021)

[4] MX Dong, et. al., All-optical reversible single-photon isolation at room temperature. Sci. Adv. 2021; 7: eabe8924 (2021)

[5] Hai-Jun Wu, et. al., Heralded generation of vectorially structured photons with high purity. Front. Phys., 654451(2021).

[6] Baosen Shi, Zhiyuan Zhou, Quantum interface for high-dimensional quantum states encoded in an orbital angular momentum space. Fundamental Research 1(1): 88–90(2021).

[7] Ru-Yue Zhong, Zhi-Han Zhu, et. al., Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light. Phys. Rev. A. 101, 053520(2021).

[8] Ying-Hao Ye, et. al., Synchronized resistance to inhomogeneous magnetic field-induced dephasing of an image stored in a cold atomic ensemble. Phys. Rev. A. 103, 053316(2021).

[9] Fei Song, Zhi-Ping Wang, En-Ze Li, et. al., Optical nonreciprocity using four-wave mixing in hot atoms. Appl. Phys. Lett. 119, 024101 (2021).

[10] 刘世凯,周志远,史保森,光学图像边缘检测技术研究进展(综述),《激光与光电子学进展》,第58卷,第10期,1011014(2021)

[11] Su-Jian Niu, et. al., Cavity-enhanced frequency doubling with a third-order quasi-phase-matched PPKTP crystal. J. Opt. Soc. Am. B. 38, 2775-2779 (2021)

[12] Chen Yang, et. al., Interference fringes in a nonlinear Michelson interferometer based on the spontaneous parametric down-conversion. Opt. Express 29, 32006-32019 (2021).

[13] Chen Yang, et. al., Angular-spectrum-dependent interference. Light Sci. Appl. 10, 217 (2021).



---------

2020

---------


[1] Chen Yang,Shilong Liu, et. al., Frequency up conversion of an infrared image via a flat-top pump beam. Optics Communications 460, 125143.(杨琛,刘世隆,共同一作)

[2] Shilong,Liu. et. al., A high dimensional quantum frequency converter.Phys. Rev. A 101, 012339(刘世隆,杨琛,共同一作)

[3] Zeng L, Dong M X, Ye Y H, et al. Modulation of the optical beam with orbital angular momentum in hot atomic rubidium vapor[J]. AIP Advances, 2020, 10(1): 015135.

[4] Dongsheng, Ding, et. al., Phase diagram and self-organizing dynamics in a thermal ensemble of strongly-interacting Rydberg atoms. Phys. Rev. X 10, 021023(2020)[Featured in physics].

[5]Xu Z H, Li Y H, Zhou Z Y, et al. High-quality versatile photonic sources for multiple quantum optical experiments[J]. Optics Express, 2020, 28(4): 5077-5084.

[6] Wang K, Ding D S, Zhang W, et al. Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space[J]. Science Bulletin, 65(4),280-285(2020).(王凯,丁冬生,共同一作)

[7] Baosen Shi, Zhiyuan Zhou, et. al., “Characterizing optical properties of chiral materials with twisted photonic states“ write in collaboration with Mukamel S,et al. Roadmap on Quantum Light Spectroscopy[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(7),072002, 2020.

[8] Chen Yang, et. al., "Extra-cavity enhanced difference frequency generation at 1.63 μm" [J]. JOSA B, 2020, 37(5): 1367-1371.

[9] Shi Shuai, et. al., Entangled qutrits generated in four-wave mixing without post-selection .Opt. Express 28, 11538-11547 (2020).

[10] Shilong, Liu, et. al., "Increasing two-photon entangled dimensions by shaping input beam profiles."PRA 101, 052324 (2020).

[11] Hai-Jun Wu, et. al.,Radial modal transitions of Laguerre-Gauss modes during parametric upconversion: Towards the full-field selection rule of spatial modes. Phys. Rev. A 101, 063805(2020).

[12] Hai-Jun Wu, et. al., Spatial-polarization-independent parametric up-conversion of vectorially structured light. Phys. Rev. Appl. 13, 064041(2020).

[13]MX Dong, et. al., Temporal Wheeler's delayed-Choice Experiment based on Cold Atomic Quantum Memory. npj Quantum Inf. 6, 72 (2020).

[14]Yi-Chen Yu, et. al., Experimental demonstration of switching entangled photons based on the Rydberg blockade effect. SCIENCE CHINA Physics, Mechanics & Astronomy 63(11): 110312(2020).

[15]En-Ze Li, et. al., Experimental demonstration of Cavity-Free Optical Isolators and Optical Circulators. Phys. Rev. Research. 2, 033517(2020)

[16]Junxiao Zhou, Shikai Liu, et. al., Metasurface enabled quantum edge detection. Sci. Adv. 16 DEC 2020: EABC4385 (2020)(周军晓,刘世凯,共同一作)

[17] Shikai Liu, et. al.., Real-time quantum edge enhanced imaging.Opt. Express 28, 35415-35426 (2020)


图文展示