多模量子存储研究室
Prof. Bao-Sen Shi's Research Group

论文专著

---------

2023

---------


[10] Ming-Yuan Gao, Yin-Hai Li, Zheng Ge, Su-Jian Niu, Guang-Can Guo, Zhi-Yuan Zhou, Bao-Sen Shi, Observing multiple processes of backward phase matching spontaneous parametric down-conversion in a single-periodic crystal, Accepted by Optics Letters

[9] Meng-xin Ren, Zhi-Han Zhu, Bao-Sen Shi, et al, Roadmap on nonlinear optics-focus on Chinese research, Phys. Photonics 5 032501 (2023)

[8] Zhi-Yuan Zhou, Zhi-Han Zhu, and Bao-Sen Shi, Diffractive Theory Study of Twisted Light’s Evolution during Phase-Only OAM Manipulations, QuantumEngineering 4589181 (2023)

[7] 周志远, 史保森, 基于频谱迁移的红外探测研究进展(特邀), 红外与激光工程 52(5): 20230165 (2023)

[6] Zheng Ge, Zhi-Yuan Zhou, Jing-Xin Ceng, Li Chen, Yin-Hai Li, Yan Li, Su-Jian Niu, Bao-Sen Shi, Thermal camera based on frequency upconversion and its noise-equivalent temperature difference characterization, Adv. Photon. Nexus 2(4) 046002 (2023)

[5] Hai-Jun Wu, Bing-Shi Yu, Jia-Qi Jiang, Chun-Yu Li, Carmelo Rosales-Guzmán, Shi-Long Liu, Zhi-Han Zhu, and Bao-Sen Shi, Observation of Anomalous Orbital Angular Momentum Transfer in Parametric Nonlinearity, Phys. Rev. Lett. 130, 153803 (2023)

[4] Xin-Yu Zhang, Hai-Jun Wu, Bing-Shi Yu, Carmelo Rosales-Guzmán, Zhi-Han Zhu, Xiao-Peng Hu, Bao-Sen Shi, Shi-Ning Zhu, Real-Time Superresolution Interferometric Measurement Enabled by Structured Nonlinear Optics, Laser Photonics Rev. 2200967 (2023)

[3] Jia-Qi Jiang, Hai-Jun Wu, Bing-Shi Yu, Chun-Yu Li, Xin-Yu Zhang, Xiao-Peng Hu, Bao-Sen Shi, and Zhi-Han Zhu, Nonlinear orbital angular momentum conversion with spatial-amplitude independence, J. Opt. 25 024004 (2023)

[2] Wei-Hang Zhang, Ying-Hao Ye, Lei Zeng, Ming-Xin Dong, En-Ze Li, Jing-Yuan Peng, Yan Li, Dong-Sheng Ding, and Bao-Sen Shi, Telecom-wavelength conversion in a high optical depth cold atomic system, Opt. Express 31, 8042-8048 (2023)

[1] Lei Zeng, Ying-Hao Ye, Ming−Xin Dong, Wei-Hang Zhang, En-Ze Li, Da-Chuang Li, Dong-Sheng Ding, and Bao-Sen Shi, Optical memory for arbitrary perfect Poincaré states in an atomic ensemble, Opt. Lett. 48, 477-480 (2023)




---------

2022

---------


[1] Chen Yang, et. al., Measuring the tuning curve of spontaneous parameter down-conversion using a comet-tail-like pattern.Opt. Lett. 47, 898-901 (2022).

[2] Hai-Jun Wu, et. al., Conformal frequency conversion for arbitrary vectorial structured light. ‍‍Optica 9, 187-196 (2022).

[3] Zong-Kai Liu, et. al., Deep learning enhanced Rydberg multifrequency microwave recognition. Nat Commun 13, 1997 (2022).

[4] 周志远,史保森,轨道角动量光束非线性转换研究进展[J]. 量子电子学报, 2022, 39(1): 32-49.

[5] Zheng Ge, et. al., Up-conversion detection of mid-infrared light carrying orbital angular momentum. Chinese Phys. B 31 104210 (2022).

[6] Su-Jian Niu, et. al., Advantages of frequency conversion technique in quantum interference. Phys. Rev. A. 105, 063715 (2022).

[7] Bang-Liu, et. al., Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor. Phys. Rev. Appl. 18, 014045 (2022).

[8] Li-Hua Zhang, et. al., Rydberg microwave frequency comb spectrometer. Phys. Rev. Appl. 18, 014033 (2022).

[9] Dong-Sheng, Zong-Kai Liu, et. al., Enhanced metrology at the critical point of a many-body Rydberg atomic system.Nat. Phys.‍ ‍18, 1447–1452 (2022).(丁冬生,刘宗凯,共同一作)

[10] Wei-Hang Zhang, et. al., Detection of infrared light through stimulated four-wave mixing process. Front. Quantum. Sci. Technol. 1:984638.

[11] Wu-Zhen Li, Chen Yang, et. al., Harmonics-assisted optical phase amplifier. Light Sci Appl 11, 312 (2022).(李武振,杨琛,共同一作)

[12] Su-Jian Niu, et. al., Multi-color laser generation in periodically poled KTP crystal with single period. ‍Chin. Opt. Lett. 21, 021901.

[13] Ying-Hao Ye, Lei Zeng, et. al., Long-lived memory for orbital angular momentum quantum states. Phys. Rev. Lett. 129, 193601.(叶英豪,曾雷,共同一作)




---------

2021

---------


[1] Zheng Ge, et. al., Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals. Opt. Lett. 46, 158-161 (2021)

[2] Yin-Hai Li, et. al., Compact sub-GHz bandwidth single-mode time-energy entangled photon source for high-speed quantum networks. OSA Continuum 4, 608-620 (2021)(Editors' Pick)

[3] Zheng-Yuan Zhang, et. al., Review of quantum simulation based on Rydberg many-body system. Chin. Phys. B 30(2): 020307 (2021)

[4] MX Dong, et. al., All-optical reversible single-photon isolation at room temperature. Sci. Adv. 2021; 7: eabe8924 (2021)

[5] Hai-Jun Wu, et. al., Heralded generation of vectorially structured photons with high purity. Front. Phys., 654451(2021).

[6] Baosen Shi, Zhiyuan Zhou, Quantum interface for high-dimensional quantum states encoded in an orbital angular momentum space. Fundamental Research 1(1): 88–90(2021).

[7] Ru-Yue Zhong, Zhi-Han Zhu, et. al., Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light. Phys. Rev. A. 101, 053520(2021).

[8] Ying-Hao Ye, et. al., Synchronized resistance to inhomogeneous magnetic field-induced dephasing of an image stored in a cold atomic ensemble. Phys. Rev. A. 103, 053316(2021).

[9] Fei Song, Zhi-Ping Wang, En-Ze Li, et. al., Optical nonreciprocity using four-wave mixing in hot atoms. Appl. Phys. Lett. 119, 024101 (2021).

[10] 刘世凯,周志远,史保森,光学图像边缘检测技术研究进展(综述),《激光与光电子学进展》,第58卷,第10期,1011014(2021)

[11] Su-Jian Niu, et. al., Cavity-enhanced frequency doubling with a third-order quasi-phase-matched PPKTP crystal. J. Opt. Soc. Am. B. 38, 2775-2779 (2021)

[12] Chen Yang, et. al., Interference fringes in a nonlinear Michelson interferometer based on the spontaneous parametric down-conversion. Opt. Express 29, 32006-32019 (2021).

[13] Chen Yang, et. al., Angular-spectrum-dependent interference. Light Sci. Appl. 10, 217 (2021).



---------

2020

---------


[1] Chen Yang,Shilong Liu, et. al., Frequency up conversion of an infrared image via a flat-top pump beam. Optics Communications 460, 125143.(杨琛,刘世隆,共同一作)

[2] Shilong,Liu. et. al., A high dimensional quantum frequency converter.Phys. Rev. A 101, 012339(刘世隆,杨琛,共同一作)

[3] Zeng L, Dong M X, Ye Y H, et al. Modulation of the optical beam with orbital angular momentum in hot atomic rubidium vapor[J]. AIP Advances, 2020, 10(1): 015135.

[4] Dongsheng, Ding, et. al., Phase diagram and self-organizing dynamics in a thermal ensemble of strongly-interacting Rydberg atoms. Phys. Rev. X 10, 021023(2020)[Featured in physics].

[5]Xu Z H, Li Y H, Zhou Z Y, et al. High-quality versatile photonic sources for multiple quantum optical experiments[J]. Optics Express, 2020, 28(4): 5077-5084.

[6] Wang K, Ding D S, Zhang W, et al. Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space[J]. Science Bulletin, 65(4),280-285(2020).(王凯,丁冬生,共同一作)

[7] Baosen Shi, Zhiyuan Zhou, et. al., “Characterizing optical properties of chiral materials with twisted photonic states“ write in collaboration with Mukamel S,et al. Roadmap on Quantum Light Spectroscopy[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(7),072002, 2020.

[8] Chen Yang, et. al., "Extra-cavity enhanced difference frequency generation at 1.63 μm" [J]. JOSA B, 2020, 37(5): 1367-1371.

[9] Shi Shuai, et. al., Entangled qutrits generated in four-wave mixing without post-selection .Opt. Express 28, 11538-11547 (2020).

[10] Shilong, Liu, et. al., "Increasing two-photon entangled dimensions by shaping input beam profiles."PRA 101, 052324 (2020).

[11] Hai-Jun Wu, et. al.,Radial modal transitions of Laguerre-Gauss modes during parametric upconversion: Towards the full-field selection rule of spatial modes. Phys. Rev. A 101, 063805(2020).

[12] Hai-Jun Wu, et. al., Spatial-polarization-independent parametric up-conversion of vectorially structured light. Phys. Rev. Appl. 13, 064041(2020).

[13]MX Dong, et. al., Temporal Wheeler's delayed-Choice Experiment based on Cold Atomic Quantum Memory. npj Quantum Inf. 6, 72 (2020).

[14]Yi-Chen Yu, et. al., Experimental demonstration of switching entangled photons based on the Rydberg blockade effect. SCIENCE CHINA Physics, Mechanics & Astronomy 63(11): 110312(2020).

[15]En-Ze Li, et. al., Experimental demonstration of Cavity-Free Optical Isolators and Optical Circulators. Phys. Rev. Research. 2, 033517(2020)

[16]Junxiao Zhou, Shikai Liu, et. al., Metasurface enabled quantum edge detection. Sci. Adv. 16 DEC 2020: EABC4385 (2020)(周军晓,刘世凯,共同一作)

[17] Shikai Liu, et. al.., Real-time quantum edge enhanced imaging.Opt. Express 28, 35415-35426 (2020)



图文展示

---------

2019

---------


[1] Chen Yang, Zhi-Yuan Zhou,et.al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop. Opt. Lett. 44, 219-222 (2019).

[2]Yan Li, Zhi-Yuan Zhou, et.al., Frequency doubling of twisted light independent of the integer topological charge.OSA Continuum 2, 470-477 (2019)

[3]Ying-hao Ye, et.al. Experimental realization of optical storage of vector beams of light in warm atomic vapor.   Opt. Lett. , 2019, 44(7): 1528-1531.(Editor-highlighted)

[4] Shi Bao-Sen, Ding Dong-Sheng, et.al.,   Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi:10.7498/aps.68.20182215.(物理学报综述文章:基于拉曼协议的量子存储).

[5]Liu S K, et al. Up-conversion imaging processing with field-of-view and edge enhancement[J].Phys. Rev. Applied 11, 044013.

[6]Shi-Long Liu, et. al., Classical simulation of high-dimensional entanglement by non-separable angular–radial modes,Opt. Express 27, 18363-18375 (2019).

Abstract

[7]Shi-long,Liu, et al.Classical analogy of a cat state using vortex light. Communications Physics   2, 75 (2019).

Abstract

[8] Shi-Long Liu, et.al., , Multiplexing heralded single photon in

orbital angular momentum space, Phys. Rev. A 100, 013833.

[9] Kai-Wang, et.al., Experimental demonstration of Two-Color Einstein-Podoisky-Rosen Entanglement in a Hot vapor cell, OSA Continuum 2, 2260-2265 (2019).

[10]Wei Zhang, et.al., Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles. Phys. Rev. A 100, 012347.

[11] Wen-Tan Fang, et.al. Tailoring nonlinear processes of orbital angular momentum with dispersion engineering in vortex fibers. Phys. Rev. Applied 12, 034007.

[12] DS Ding, et.al. Bandwidth of Orbital Angular Momentum Interface between Photon and Memory. Communications Physics 2: 100 (2019).

2018

[13] Wu H J, et al. Vectorial nonlinear optics: Type-II second-harmonic generation driven by spin-orbit-coupled fields[J]. PRA, 2019, 100(5): 053840.

[14] Zhou, Z. Y., & Shi, B. S. (2019). Generation and Manipulation of Nonclassical Photon Sources in Nonlinear Processes. In Single Photon Manipulation. IntechOpen.



---------

2018

---------

[1]Bao-Sen Shi, Dong-Sheng Ding and Wei Zhang,Quantum storage of orbital angular momentum entanglement in cold atomic ensembles

2018 J. Phys. B: At. Mol. Opt. Phys. 51 032004

[Topical Reviews.]

[2]S. Liu, Z. Han, S. Liu, Y. Li, Z. Zhou, and B. Shi, "Efficient 525 nm laser generation in single or double resonant cavity,"Optics Communications 410, 215-221 (2018)

[3]Yu Y C, Ding D S, Dong M X, et al. Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms[J]. PRA, 2018, 97(4): 043809.

[4]Zhu Z H, Chen P, Li H W, et al. Fragmentation of twisted light in photon–phonon nonlinear propagation[J]. Applied Physics Letters, 2018, 112(16): 161103.

[5] Fang W T, Li Y H, Zhou Z Y, et al. On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement[J]. Optics Express, 2018, 26(10): 12912-12921.

[6]S. Shi, D. S. Ding, et.al. Vortex-phase-dependent momentum and position entanglement generated from cold atoms[J].Phys. Rev. A 97, 063847.

[7]Ding, Dong-Sheng.   Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles.Springer. 91-107. (2018)

[8] Zhi-Yuan Zhou, Shi   Kai Liu et.al. Revealing the Behavior of Photons in a Birefringent Interferometer. Phys. Rev. Lett. 120, 263601

[9] Li Y H, Fang W T, Zhou Z Y, et al. Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip[J]. Optics Express, 2018, 26(22): 28429-28440.

[10]Shilong Liu, Zhiyuan Zhou,et.al.,Coherent manipulation of a threedimensional maximally entangled state.[J].Phys. Rev. A 98, (6), 062316.

[11]Wei Zhang, Ming-Xin Dong, et.al. Interfacing a two-photon NOON state with an atomic quantum memory[J]. Phys. Rev. A 98 (6), 063820

[12]Zhang W, Ding D S, Dong M X, et al. Wave-particle superposition of distinct atomic spin excitations[J]. Phys. Rev. A, 2018, 98(6): 063829.


---------

2017

---------

[1]Shi L liu, SK Liu.Coherent frequency bridge between visible and telecommunications band for vortex light. Opt. Express 25, 24290-24298 (2017)   

[2]Zhi-Yuan Zhou, Zhi-Han Zhu, Shi-Long Liu,et al. Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality. Science Bulletin, 2017, 62(17):1185-1192

[3]Zhi-Yuan Zhou, Shi-Long Liu, Shi-Kai Liu, Yin-Hai Li, Dong-Sheng Ding, Guang-Can Guo, and Bao-Sen ShiSuper-resolving phase measurement with short wavelength NOON states by quantum frequency up-conversion,Phys. Rev. Applied 2017,7, 064025

[4]Zhang W, Ding D S, Sheng Y B, et al. Quantum secure direct communication with quantum memory[J].Physical Review Letters, 2017, 118(22): 220501..

[5]Yin-Hai Li,et al.On-chip multiplexed multiple entanglement sources in a single silicon nanowire,Phys. Rev. Applied 7, 064005

[6]Dong M X, Zhang W, Shi S, et al. Two-color hyper-entangled photon pairs generation in a cold 85 Rb atomic ensemble[J]. Opt. Express, 2017, 25(9): 10145-10152.

[7]Wang K, Zhang W, Zhou Z, et al. Optical storage of orbital angular momentum via Rydberg electromagnetically induced transparency[J]. Chinese Optics Letters, 2017, 15(6): 060201.

[8]Shi S, Ding D S, Zhang W, et al. Transverse azimuthal dephasing of a vortex spin wave in a hot atomic gas[J]. Physical Review A, 2017, 95(3): 033823.

[9]Han Z H, Liu S L, Liu S K, et al. Efficient frequency doubling at 776nmin a ring cavity[J]. Optics Communications, 2017, 396: 146-149

[10]Ming-Xin Dong, Wei Zhang, Zhi-Bo Hou, Yi-Chen Yu, Shuai Shi, Dong-Sheng Ding, and Bao-Sen Shi, "Experimental realization of narrowband four-photon Greenberger–Horne–Zeilinger state in a single cold atomic ensemble," Opt. Lett. 42, 4691-4694 (2017)

----------

2016

----------

[1]Wei Zhang et.al. Experimental realization of entanglement inmultiple degrees of freedom between two quantum memories, Nature Communications7,13514(2016)

[2]Dong-Sheng Ding†,Wei Zhang†,Shuai Shi†,Zhi-Yuan Zhou, Yan Li, Bao-Sen Shi, and Guang-Can Guo, High-dimensionalentanglement between distant atomic-ensemble memories, Light: Science & Applications 5, e16157(2016)

[3]Wei Zhang, Dong-Sheng Ding, Shuai Shi, Yan Li, Zhi-Yuan Zhou, Bao-SenShi, and Guang-Can Guo, Storing single photon as spin wave entangled withflying telecom-wavelength photon, Phys. Rev. A 93, 022316(2016)

[4]Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang,S. Shi, B.-S. Shi, and G.-C. Guo, Orbital angular photonic quantum interface, Light:Science & Application, 5, e16019(2016)

[5]Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang,S. Shi, B.-S. Shi, G.-C. Guo, Tunable cavity-enhanced photon pairs source inHermite-Gaussian mode, AIP Advances 6, 025114 (2016)

[6]Zhi-Yuan Zhou, Shi-Long Liu, Yan Li, Dong-Sheng Ding, Wei Zhang, Shuai Shi, Ming-Xin Dong, Bao-Sen Shi, and Guang-CanGuo, Orbital Angular Momentum-Entanglement Frequency Transducer, Phys.Rev. Lett. 117, 103601 (2016)

[7]Yan Li, Zhi-Yuan Zhou, Dong-Sheng Ding, WeiZhang, Shuai Shi, Bao-Sen Shi, and Guang-Can Guo. Non-destructive splitterof twisted light based on modes

splitting in a ring cavity, Opt.Express 24, 2166 (2016)

[8]L.-T. Feng, M. Zhang, Z.-Y. Zhou(共同一作), M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P.Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo.On-chip coherent conversion of photonicquantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016).

[9]Yin-HaiLi, Zhi-Yuan Zhou(共同一作), Zhao-Huai Xu, Li-Xin Xu, Bao-Sen Shi, andGuang-Can Guo.Multiplexedentangled photon-pair sources for all-fiber quantum networks. Phys. Rev. A 94,043810 (2016).

[10] Yan Li, Zhi-Yuan Zhou*, Dong-Sheng Ding & Bao-Sen Shi. Dynamic modeevolution and phase transition of twisted light in nonlinear process. J. Mod.Opt. 63, 2271-2278(2016).

----------

Before publications.